Generalized Shifted Chebyshev Koornwinder’s Type Polynomials: Basis Transformations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomials Related to Generalized Chebyshev Polynomials

We study several classes of polynomials, which are related to the Chebyshev, Morgan-Voyce, Horadam and Jacobsthal polynomials. Thus, we unify some of well-known results.

متن کامل

Characterization of the generalized Chebyshev-type polynomials of first kind

Orthogonal polynomials have very useful properties in the mathematical problems, so recent years have seen a great deal in the field of approximation theory using orthogonal polynomials. In this paper, we characterize a sequence of the generalized Chebyshev-type polynomials of the first kind { T (M,N) n (x) } n∈N∪{0} , which are orthogonal with respect to the measure √ 1−x2 π dx + Mδ−1 + Nδ1, w...

متن کامل

Generalized Chebyshev polynomials of the second kind

We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...

متن کامل

Generalized Vandermonde Determinants over the Chebyshev Basis

It is a well known fact that the generalized Vandermonde determinant can be expressed as the product of the standard Vandermonde determinant and a polynomial with nonnegative integer coefficients. In this paper we generalize this result to Vandermonde determinants over the Chebyshev basis. We apply this result to prove that the number of real roots in [1;1] of a real polynomial is bounded by th...

متن کامل

Generalized Gorshkov-Wirsing Polynomials and the Integer Chebyshev Problem

Interval LLL SIMPLEX HS Amoroso Lower # CP [-1, 1] 1/1.5314 1/1.5334 1/1.4772 1/1.4520 1/1.5417 8 [-1/2, 1/2] 1/2.3559 1/2.3619 1/2.1822 1/1.4520 1/2.3768 9 [-1/3, 1/3] 1/3.2522 1/3.2617 1/3.0000 1/1.3887 1/3.2842 7 [-2/3, 2/3] 1/1.8820 1/1.8883 1/1.7237 1/1.3887 1/1.9845 5 [-1/4, 1/4] 1/4.1921 1/4.2025 1/4.0000 1/1.1097 1/4.2260 6 [-3/4, 3/4] 1/1.7897 1/1.7935 1/1.7237 1/1.1097 1/1.9653 3 [-1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2018

ISSN: 2073-8994

DOI: 10.3390/sym10120692